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Abstract. We extend the (core) Cryptographic Protocol Logic (CPL)
(qualitative time) with real time, i.e., time stamps, timed keys, and po-
tentially drifting local clocks, to tCPL (quantitative time). Our extension
is conservative and really simple; it requires only the refinement of two
relational symbols (two new axioms resp. one new parameter) and of one
operator (one new conjunct in its truth predicate), and the addition of
two relational symbols (but no operators!). Our work1 thus provides fur-
ther evidence for Lamport’s claim that adding real time to an untimed
formalism is really simple.

Keywords applied formal logic, cryptographic protocols, property-
based specification and verification, real time

The formal modelling, specification, and verification of general-purpose timed
systems has received considerable attention from the formal methods commu-
nity since the end of the nineteen-eighties. See [2] for a survey of timed models
(automata, Petri nets), model- and property-based specification languages (pro-
cess calculi, resp. logics), and verification tools; and [3] for a survey of timed
property-based specification languages (logics).

However, the formal methods community has paid comparatively little, and
only recent (since the end of the nineteen-nineties), attention to the timed as-
pects of cryptographic systems, e.g., cryptographic protocols, which due to their
complexity deserve special-purpose models, and formalisms for their specification
and verification.

We are aware of the following special-purpose formalisms for timed crypto-
graphic protocols. Model-based formalisms (process calculi): [4], [5], [6] with dis-
crete time; [7], [8], and our own contribution [9] with dense time. Property-based
formalisms (logics): interval -based [10]; time-parametrised epistemic modalities
[11] and a third-order logic [8] both point-based, and our hereby informally
summarised logic tCPL [1, Appendix C] allowing for both temporal points and
intervals.

Clearly, “[d]ense-time models are better for distributed systems with multi-
ple clocks and timers, which can be tested, set, and reset independently.” [2].
Specifically in cryptographic systems [12], “[c]locks can become unsynchronized
due to sabotage on or faults in the clocks or the synchronization mechanism,
1 this paper is an informal excerpt from the corresponding addendum to [1, Ap-

pendix C] with technical details
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such as overflows and the dependence on potentially unreliable clocks on remote
sites [. . .]”. Moreover [12], “[e]rroneous behaviors are generally expected during
clock failures [. . .]”.

Timed logics can be classified w.r.t. their order and the nature of their tem-
poral domain. Order: propositional logic is simply too weak for specification pur-
poses2; modal logics provide powerful abstractions for specification purposes, but
are still not expressive enough [1]; higher-order logics are too expressive at the
cost of axiomatic and computational incompleteness3; finally “[f]irst-order logics
seem a good compromise between expressiveness and computability, since they
are [axiomatically] complete in general.” [2]. Core CPL is a poly-dimensional
modal (norms, knowledge, space, qualitative time) first-order logic [1].

Temporal domain: core CPL can be instantiated with a transitive, irreflexive,
linear and bounded in the past, possibly branching (but a priori flattened) and
unbounded (depending on the protocol) in the future, discrete (event-induced
protocol states)4 temporal accessibility relation [13]. tCPL [1, Appendix C] can
be instantiated with a temporal accessibility relation that additionally accounts
for quantitative time [9]. That is, time is (1) rational-number5 valued (yielding
a dense temporal grain); (2) referenced explicitly (the truth of a timed formula
does not depend on its evaluation time), but implicit-time operators are macro-
definable (cf. [1, Appendix C]); (3) measured with potentially drifting local clocks
(one per protocol participant), where the (standard Dolev-Yao) adversary’s local
clock has drift rate 1; (4) advanced monotonically by letting the adversary choose
the amount by which she desires to increase her local clock (de facto de system
clock)6; and (5) determinant for adversarial break of short-term keys, enabled
jointly by key expiration and ciphertext-only attacks (the weakest reasonable
attack).

The technical details of the extension of CPL to tCPL are described in [1,
Appendix C]. The extension of CPL to tCPL parallels the extension of C3 [13]
to tC3 [9].
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